
ERDC MSRC/PET TR/00-18

A Fortran Interface to POSIX Threads

by

Richard J. Hanson
Clay P. Breshears
Henry A. Gabb

25 May 2000

06h0072000

A Fortran Interface to POSIX Threads

Richard J. Hanson1 Clay P. Breshears2 Henry A. Gabb3

May 25, 2000

1Center for High Performance Software Research, Rice University
2Rice University On-site Scalable Parallel Programming Tools Lead for PET
3ERDC MSRC Director of Scienti�c Computing

Work funded by the DoD High Performance Computing

Modernization Program ERDC

Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Computer Sciences Corporation

Views, opinions, and/or �ndings contained in this report are those of the au-
thor(s) and should not be construed as an oÆcial Department of the Defense
position, policy, or decision unless so designated by other oÆcial documentation.

Abstract

Pthreads is the library of POSIX standard functions for concurrent, multithreaded program-
ming. The POSIX standard only de�nes an application programming interface (API) to
the C programming language, not to Fortran. Many scienti�c and engineering applications
are written in Fortran. Also, many of these applications exhibit functional, or task-level,
concurrency. They would bene�t from multithreading, especially on symmetric multipro-
cessors (SMP). We present here an interface to that part of the Pthreads library that is
compatible with standard Fortran. The contribution consists of two primary source �les: a
Fortran module and a collection of C wrappers to Pthreads functions. The Fortran mod-
ule de�nes the data structures, interface and initialization routines used to manage threads.
The stability and portability of the Fortran API to Pthreads is demonstrated using common
mathematical computations on three di�erent systems.

May 25, 2000 A Fortran Interface to POSIX Threads

1 Introduction

Pthreads is a POSIX standard library [5] for expressing concurrency on single processor
computers and symmetric multiprocessors (SMPs). Typical multithreaded applications in-
clude operating systems, database search and manipulation, and other transaction-based
systems with shared data. These programs are generally coded in C or C++. Hence, the
POSIX standard only de�nes a C interface to Pthreads. The lack of a Fortran interface
has limited the use of Pthreads for scienti�c and numerically intensive applications. How-
ever, since many scienti�c computations contain opportunities for exploiting functional, or
task-level concurrency, many Fortran applications will bene�t from multithreading.

A thread represents an instruction stream executing within a single address space; mul-
tiple threads, of the same process, share this address space. Threads are sometimes called
\lightweight" processes because they share many of the properties and attributes of full
processes but require minimal system resources to maintain. When an operating system
switches context between processes, the entire memory space of the executing process must
be saved and the memory space of the process scheduled for execution must be restored.
When switching context between threads there is no need to save and restore large portions
of memory because the threads are executing within the same memory space. This savings
of system resources is a major advantage of using threads.

The Pthreads library provides a means to control the spawning, execution, and termi-
nation of multiple threads within a single process. Concurrent tasks are mapped to threads.
Threads within the same process have access to their own local, private memory but also
share the memory space of the global process. Executing on SMPs, the system may execute
threaded tasks in parallel.

As useful as the Pthreads standard is for concurrent programming, a Fortran interface is
not de�ned. The POSIX 1003.9 (FORTRAN Language) committee was tasked with creating
\a FORTRAN (77) de�nition to the base POSIX 1003.1-1990 standard" [3]. There is no
evidence of any POSIX standard work to produce a FORTRAN equivalent to the Pthread
standard. Fortran 90 has corrected many shortcomings of FORTRAN 77 that may have
prevented the formulation of such a standard. There are no serious technical barriers to
implementing a workable API in Fortran 90.

We describe the implementation and testing of a Fortran API to Pthreads (FPTHRD).
Our tests indicate that the API is standard-complying with Fortran 90 or Fortran 95 com-
pilers. For this reason we use `Fortran' to mean compliance with both standards.

The following section gives some general information on the threaded programming
model with speci�c examples taken from the POSIX library functions. More complete
descriptions of the POSIX thread library can be found in [2, 6, 7]. We next give details of
the design and implementation of the Fortran API package to the Pthreads library. Section 4
presents threaded example problems and a comparison of their execution performance on
three separate SMPs, each with a di�erent native Pthread implementation.

2 Threaded Programming Concepts

Multithreading is a concurrent programming model. Threads may execute concurrently on
a uniprocessor system. Parallel execution, however, requires multiple processors sharing the

2 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

same memory; i.e., SMP platforms.
Threads perform concurrent execution at the task or function level. A single process

composed of independent tasks may break up these computations into a set of concurrently
executing threads. Each thread is an instruction stream, with its own stack, sharing the
global memory space assigned to the process. Upon completion, the thread's resources are
recovered by the system.

All POSIX threads executing within a process are peers. Thus, any thread may cancel
any other thread; any thread may wait for the completion of any other thread; and any
thread may block any other thread from executing protected code segments. There is no
explicit parent-child relationship unless the programmer speci�cally implements such an
association.

With separate threads executing within the same memory address space, there is the po-
tential for memory access conicts; i.e., write/write and read/write conicts (also known as
race conditions). Write/write conicts arise when multiple threads attempt to concurrently
write to the same memory location; read/write conicts arise when one thread is reading a
memory location while another thread is concurrently writing to that same memory loca-
tion. Since scheduling of threads is largely non-deterministic, the order of thread operations
may di�er from one execution to the next. It is the responsibility of the programmer to
recognize potential race conditions and control them.

Fortunately, Pthreads provides a mechanism to control access to shared, modi�able
data. Locks, in the form of mutual exclusion (mutex) variables, prevent threads from
entering critical regions of the program while the lock is held by another thread. Threads
attempting to acquire a lock (i.e., enter a protected code region) will wait if another thread
is already in the protected region. Threads acquire and release locks using function calls to
the Pthreads library.

Pthreads provides an additional form of synchronization through condition variables.
Threads may pause execution until they receive a signal from another thread that a par-
ticular condition has been met. Waiting and signaling is done using Pthreads function
calls.

2.1 POSIX Considerations

The Pthreads header �le (pthread.h) contains system dependent de�nitions for data struc-
tures that are used with the Pthreads routines. These are typically C structures and are
intended to be opaque to the programmer. Manipulation of and access to the contents of
the structures should only be done through calls to the appropriate Pthreads functions.
Since programmers do not need to deal with di�erences of structure de�nitions between
platforms, this opacity enables codes to be portable.

Standard names for error codes that can be returned from system calls are established by
the POSIX standard. Integer valued constants are de�ned with these standard names within
system header �les. As with Pthreads structures, the actual value of any given error code
constant may change from one operating system to the next. The names of error codes that
may be returned (and the conditions that caused them) from any individual function are
listed within the manual pages for the function. As with Pthreads structures, the intention
is to keep the speci�c values given to each error code hidden from the programmer. Thus,

3 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

the programmer need only compare a function's return value against the named constant
to determine if a speci�c error condition has arisen.

3 Design and Implementation of Fortran API

The Pthreads library is relatively small, consisting of only 61 routines that can loosely be
classi�ed into three categories: thread management, thread synchronization, and thread
attributes control. Thread management functions deal with the creation, termination, and
other manipulation of threads. The two methods available for guaranteeing the correct
and synchronous execution of concurrent threads are mutex and condition variables. These
constructs, and the functions to handle them, are used to ensure the integrity of data
being shared by threads. The Pthreads standard de�nes attributes in order to control the
execution characteristics of threads. Such attributes include detach state, stack address,
stack size, scheduling policies, and execution priorities.

3.1 Fortran Interface Details

The FPTHRD package consists of a Fortran module and �le of C routines. The module
de�nes Fortran derived types, parameters, interfaces, and routines to allow Fortran pro-
grammers to use Pthread routines. The C functions provide the interface from Fortran
subroutine calls and map parameters into the corresponding POSIX routines and function
arguments.

The following sections describe some of the design decisions we faced and the similarities
and di�erences between FPTHRD and the Pthreads standard.

3.1.1 Naming Conventions

The names of the FPTHRD routines are derived from the Pthreads root names; i.e., the
string following the pre�x pthread . The string fpthrd replaces this pre�x. In this
way, a call to the Pthreads function pthread create() translates to a call to the Fortran
subroutine fpthrd create(). Our initial thoughts were to pre�x the full POSIX names
with the character f, which would yield the pre�x string fpthread before each root name.
However, the Fortran standard [1] limits subroutine and variable names to 31 characters.
The longest POSIX de�ned name is 32 characters in length. Since the fpthrd pre�x yields
a net loss of one character over the POSIX pre�x, we can guarantee that routine names
in our package will have no more than 31 characters. All the Fortran routine names are
therefore standard-compliant and all the Pthreads root names remain intact.

For consistency, all POSIX data types (Table 1) and de�ned constants (Table 2) pre�xed
with pthread (PTHREAD) are de�ned with the pre�x fpthrd (FPTHRD) within
the Fortran module. Besides those de�ned speci�cally for Pthreads types, other POSIX
types are used as parameters to Pthreads functions. For these additional structures a
corresponding de�nition is included within the module with the pre�x character f added to
the POSIX name.

4 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Table 1 Correspondence Between Pthreads Types and FPTHRD Derived Types

POSIX Structure Name Fortran Derived Type Name

pthread t TYPE (fpthrd t)

pthread once t TYPE (fpthrd once t)

pthread attr t TYPE (fpthrd attr t)

pthread mutex t TYPE (fpthrd mutex t)

pthread mutexattr t TYPE (fpthrd mutexattr t)

pthread cond t TYPE (fpthrd cond t)

pthread condattr t TYPE (fpthrd condattr t)

sched param TYPE (fsched param)

timespec TYPE (ftimespec)

size t TYPE (fsize t)

Table 2 Correspondence Between Pthreads Constants and FPTHRD Equivalents

POSIX Constant Name FPTHRD Parameter

PTHREAD CREATE DETACHED FPTHRD CREATE DETACHED
PTHREAD CREATE JOINABLE FPTHRD CREATE JOINABLE

PTHREAD PROCESS PRIVATE FPTHRD PROCESS PRIVATE
PTHREAD PROCESS SHARED FPTHRD PROCESS SHARED

PTHREAD PRIO PROTECT FPTHRD PRIO PROTECT
PTHREAD PRIO INHERIT FPTHRD PRIO INHERIT
PTHREAD PRIO NONE FPTHRD PRIO NONE

PTHREAD CANCEL ENABLE FPTHRD CANCEL ENABLE
PTHREAD CANCEL DISABLE FPTHRD CANCEL DISABLE

PTHREAD CANCEL DEFERRED FPTHRD CANCEL DEFERRED
PTHREAD CANCEL ASYNCHRONOUS FPTHRD CANCEL ASYNCHRONOUS

PTHREAD CANCELED FPTHRD CANCELED

PTHREAD SCOPE SYSTEM FPTHRD SCOPE SYSTEM
PTHREAD SCOPE PROCESS FPTHRD SCOPE PROCESS

PTHREAD INHERIT SCHED FPTHRD INHERIT SCHED
PTHREAD EXPLICIT SCHED FPTHRD EXPLICIT SCHED

PTHREAD STACK MIN FPTHRD STACK MIN
PTHREAD THREADS MAX FPTHRD THREADS MAX

SCHED RR SCHED RR
SCHED FIFO SCHED FIFO
SCHED OTHER SCHED OTHER

5 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 1 Example Code { Use of Static Initializers

TYPE (fpthrd_mutex_t) :: any_mutex

:

any_mutex = FPTHRD_MUTEX_INITIALIZER

3.1.2 Structure Initialization

Besides the routines speci�cally designed for initialization, the Pthreads library includes
prede�ned constants that can be used to initialize mutexes, condition variables, and `once
block' structures to their default values. Corresponding derived type constants for initializa-
tion have been de�ned and included in FPTHRD. The type and names of these initialization
constants for a condition variable, mutex variable, and `once block' variable are:

TYPE (fpthrd_cond_t) :: FPTHRD_COND_INITIALIZER

TYPE (fpthrd_mutex_t) :: FPTHRD_MUTEX_INITIALIZER

TYPE (fpthrd_once_t) :: FPTHRD_ONCE_INIT

To use these initialized data types with default attributes, assign the value in a program
unit with the assignment operator (Figure 1).

3.1.3 Parameters

The Fortran API preserves the order of the arguments of the C functions and provides
the C function value as the �nal argument. This style of using Fortran subroutines for
corresponding C functions with the return argument appended to the parameter list is used
in the Fortran API for both MPI [8] and PVM [4]. This trailing integer argument is most
often used to return an indicator of the termination status of the routine. A return value of
zero indicates that the routine call did not yield any exception; any non-zero return value
indicates that an exception condition occurred during execution. Whether an exception
condition is an error or can be ignored is determined in the context of the application. The
POSIX standard de�nes names for speci�c conditions and requires �xed integer values be
attached to these error codes. The Fortran module de�nes integer constants with the same
names as the POSIX standard for all potential error codes that might be returned from
Pthreads functions. The values of these Fortran constants are the same as their POSIX
counterparts on the target platform. The routines fpthrd self() and fpthrd equal() have
no status argument since they do not return exception ags.

Fortran provides compile-time checking of argument type, number, kind, and rank using
interface blocks. This is an advantage over the C programming language, which does not
provide argument checking. Besides the compile-time checking, interface blocks also provide
for argument overloading. This feature allows the use of TYPE(C NULL) parameters where
an optional NULL could be used in the underlying C functions. Fortran interface blocks also
make it possible for the status parameter to be optional in Fortran routine calls. The module
in our package provides interface blocks for the Fortran routines that call corresponding C
functions with the exception of routine fpthrd create(). Since the argument type for

6 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

the threaded subroutine is chosen by the program author, it is necessary to exclude type
checking for fpthrd create(). The status parameter is not optional in calls to this routine.

3.1.4 fpthrd join() Parameters

One special case should be mentioned with respect to parameters. The second parameter
of fpthrd join() is used to return an exit code from the fpthrd exit() call of the thread
being joined. The Pthreads library uses a void ** type to allow the return of any de�ned
data value or struct. If no value is expected or needed by the joining thread, a NULL value
may be used.

Due to the di�erence in the way C and Fortran pointers are implemented (see x3.3
for further discussion) and the desire to keep the programming of the interface as simple
as possible, it was decided to restrict the type of this parameter to INTEGER. This type
restriction is repeated in the single parameter of the fpthrd exit() routine which generates
the value.

Within scienti�c applications, it was thought that this exit value would be used mostly
for returning a completion code to the joining thread. Special codes could be designed to
signify the success or failure, and the cause of any failure, of the joined thread. Should more
elaborate data structures be required to be passed from a thread to that thread which joins
it, the integer value can be used as a unique index into a global array of results.

3.1.5 Description of Routines and Arguments

Appendix A contains a brief description of the functionality of each routine included in
the Fortran API along with the types and order of the parameters. We refer the reader
to [2, 6, 7] for a more complete description of Pthreads functions.

3.2 Support and Utility Routines

This section contains details on several routines that are not included in the Pthreads
standard. These routines have been included in FPTHRD to provide the programmer the
ability to give the runtime system a hint as to the number of active threads desired, to
initialize the Fortran API routines and check parameter values and derived type sizes, and
to manipulate POSIX de�ned data types required by certain Pthreads functions for which
there is no Fortran compliant method generally available. Details on the parameter types
and order for the routines described here are included in Appendix B.

Many systems that support multithreading have an included function to inform the run-
time system of the number of threads the system should execute concurrently. This seems to
be particularly relevant for uniprocessor systems and is intended to allow �ner control of sys-
tem resources by the thread programmer. We have included the fpthrd setconcurrency()

and fpthrd getconcurrency() subroutines in FPTHRD in order to give the programmer
the chance to request the number of kernel entities that should be devoted to threads; i.e.,
the number of threads to be executing concurrently. If the target platform does not support
this functionality, calls to these routines will return without altering anything.

An initial data exchange is required as a �rst program step before using other routines in
FPTHRD. Initialization is performed with a call to the routine fpthrd data exchange().

7 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 2 Example Code { Use of Error Codes

DO

CALL fpthrd_create(tid, NULL, thred_routine, routine_arg, ierr)

IF (ierr /= EAGAIN) EXIT

CALL wait_some_random_time

END DO

This routine is similar in functionality to the MPI INIT() routine from MPI. The data
exchange was found to be necessary because the parameters de�ned in Fortran or constants
de�ned in C are not directly accessible in the alternate language. One such value of note is
the parameter NULL passed from Fortran to C routines. This integer is used as a signal
within the C wrapper code to substitute a NULL pointer for the corresponding function
argument. The derived type TYPE(C NULL), while available to programmers, is not
meant for use except to de�ne the special parameter value NULL.

The working space for the C structures of Pthreads data types is stored as Fortran de-
rived types. Each of the de�nitions for derived types is an integer array with the PRIVATE
attribute. Pthreads structures are opaque. The PRIVATE attribute prevents the Fortran pro-
gram from inadvertently accessing the data in these structures. One other task performed
by the fpthrd data exchange() routine is to ensure that the Fortran derived types are of
suÆcient size to hold the corresponding C structures.

Five additional routines are included to give the programmer the ability to manipulate
those C structures used by Pthreads that are not a direct part of the Pthreads de�ni-
tion. The Fortran names de�ned in FPTHRD for these data types are TYPE(fsize t),
TYPE(ftimespec), and TYPE(fsched param) (as shown in Table 1). For these data
types there are routines to set and retrieve values from objects of each type.

3.2.1 Error Checking

The POSIX standard de�nes a set of error codes that may be returned from calls to Pthreads
functions that signal when exceptional conditions have occurred. These exception codes are
available from the routines in FPTHRD through the optional status parameter. Exami-
nation of the returned value of the status parameter allows codes to dynamically react to
possibly fatal conditions that may arise during execution.

As an example, consider a code that requires the creation of a large number of threads.
During execution, resources may be temporarily unavailable to create new threads. Rather
than abort the entire computation at this exception, it would be prudent to pause the cre-
ation of new threads until resources become available. In the event that the fpthrd create()

status parameter return value be equal to the EAGAIN error constant, the spawning thread
would wait for some amount of time before attempting to create another thread (Figure 2).
As long as the EAGAIN exception value is returned from fpthrd create(), the spawning
thread will continue to wait before attempting to create the new thread.

While each platform may have di�erent values for EAGAIN and all other error constants,
the initial data exchange routine accounts for these di�erences. All the programmer needs

8 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 3 Example Code { Use of ferr abort()

print *, 'Join the same thread twice.'

call FPTHRD_join(thread, NULL, status)

call ferr_abort (5, status, ", joining thread")

print *, 'First JOIN okay.'

call FPTHRD_join(thread, NULL, status)

call ferr_abort (6, status, ", joining thread")

print *, 'Second JOIN okay.'

to do is use the symbolic name; e.g., EAGAIN. The possible error constants that may be
returned from each routine in FPTHRD are detailed in the `man' page for each routine.

Since most routines in FPTHRD have several possible exception codes, rather than
speci�cally check for each one, a method to print out what exception code was returned
may be desired. This is especially true when debugging threaded applications. FPTHRD
contains a routine, ferr abort(), that provides the functionality described above as well
as aborting further processing by all threads. A brief description of the ferr abort()
subroutine and its parameters is given below.

SUBROUTINE ferr_abort(sequence_number, status, text_string)

INTEGER, INTENT(IN) :: sequence_number

INTEGER, INTENT(IN) :: status

CHARACTER, DIMENSION(*), INTENT(IN) :: text_string

The sequence number is an arbitrary identifying integer printed with the error message.
The status argument is a variable holding the exception code value returned from a prior
call to some routine in FPTHRD. If the status value is non-zero, a message containing
the corresponding error constant is printed along with the text of the third argument. A
Fortran STOP 'Abort' is also executed to terminate the computation. If the status value
is zero, no action is taken by the ferr abort() routine. Thus, it is safe (and very wise) to
insert calls to ferr abort() after calls to FPTHRD routines when fatal errors are possible.
Where it is possible that non-fatal exceptions may be encountered, these should be dealt
with directly by the application code.

As an example, a call to fpthrd join() to a given thread after that thread has already
been joined yields an exception (Figure 3). The output (Figure 4) indicates the thread
does not exist because it was joined in a previous call. (This would often be considered a
non-fatal exception, but one that the programmer would wish to know had occurred.) The
next-to-last line in the message beginning with \Unix error ..." contains verbatim text
returned from the Unix character utility, strerror(status).

9 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 4 Example Output { Use of ferr abort()

Join the same thread twice.

First JOIN okay.

Failed 6 with value 3 , joining thread

Error codes are valid after statement: CALL FPTHRD_DATA_EXCHANGE()

3 ESRCH No such thread exists.

Unix error summary: No such process

STOP Abort

3.3 What's Not Included in the Package

The functionality of several routines included in the Pthreads library is outside the scope of
Fortran. We describe these functions in this section and state our reasons for their exclusion
from FPTHRD.

The functions pthread cleanup push() and pthread cleanup pop() allow the pro-
grammer to place and remove function calls into a stack structure. Should a thread be
canceled before the corresponding pop calls have been executed, the functions are removed
from the stack and executed. In this way, threads are able to \cleanup" details such as
allocated memory even if normal termination is thwarted.

While the functionality of these routines is desirable, they are typically implemented as
macros de�ned in the pthread.h header �le in order to ensure paired push and pop calls.
Upon further examination, we have found undocumented system calls and data structures
used within these macros. Since the targets for FPTHRD are scienti�c computation and
numerical codes, it was concluded that such functionality might not be as useful as other
functions. With that in mind, it was decided the e�ort required to develop a simple, general
algorithm to implement equivalent cleanup functions in Fortran outweighed the potential
bene�t.

In order to understand the problems inherent in the functions associated with thread-
speci�c data|pthread getspeci�c(), pthread key create(), pthread key delete(),
and pthread setspeci�c()|we examine the function pthread getspeci�c(). This func-
tion returns a void C pointer to a data object associated with the calling thread. This
allows local data pertinent to a user's threaded function to be available before the thread
terminates. Fortran de�nes a pointer attribute for intrinsic and derived types (from [1]):

\...a pointer is a descriptor with space to contain information about the type,
type parameters, rank, extents, and location of a target. Thus a pointer to a
scalar object of type real would be quite di�erent from a pointer to an array
of user-de�ned type. In fact each of these pointers is considered to occupy a
di�erent unspeci�ed storage unit."

A C pointer is simply a memory address. As evidenced from the above passage, Fortran
cannot access or manipulate memory addresses directly. At this time, we can �nd no
portable way to implement the thread-speci�c data functions without imposing obstructive
constraints.

10 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

The functions pthread attr getstackaddr() and pthread attr setstackaddr() ma-
nipulate a thread's stack address. As stated previously, Fortran has no facility to directly
manipulate memory addresses. Besides, implementation details, such as a stack, are not
addressed in the Fortran standard. Thus, there is a danger that a Fortran program that
calls these routines may not recognize setting of the stack address.

The pthread atfork(), pthread kill(), and pthread sigmask() functions deal with
the fork() function and interthread signaling. Since support for these features from Fortran
programs within the runtime system is unknown and perhaps even unsupported, especially
between di�erent operating systems, these functions are not included in FPTHRD.

3.4 Package Contents

FPTHRD consists of a Fortran module, fpthrd.f90, and a �le of C functions, ptf90.c, and
an include �le, summary.h. We also have included four test/veri�cation programs, timing
programs for matrix-vector product and matrix transpose, `man' pages for each function
within FPTHRD, and other documentation.

4 Performance Benchmarks and Test Results

A primary reason for a programmer to use thread technology is to enhance performance of
an application code. In this section we have included timing information that demonstrates
threaded eÆciency for computing a matrix-vector product and transposing storage of an
array. The size of the square matrices is n = 1023 rows and columns. Small values of n are
not likely to see bene�t due to the system overhead of managing the threads.

4.1 Matrix-Vector Product

For this benchmark, the task is to compute y = Ax, where A is an n� n real matrix and
x and y are both real vectors of length n. To this end consider the compatible partitioning
A = [A1jA2j � � � jAk] and x = [x1jx2j � � � jxk]

T where each Ai is a consecutive set of columns
from A and each xi is a subvector of x that contains the corresponding elements as the
columns in Ai. The partitioning of A provides the computation y =

Pk
i=1Aixi. Each term

of the sum may be computed concurrently. We examine three methods for accomplishing
this computation: simple loops, the Fortran MATMUL intrinsic, and threaded.

4.1.1 Simple Loops

This method uses an ordinary doubly nested loop (Figure 5). The inner loop moves with
unit strides in accessing the entries of the arrays Y(:) and A(:,:). (We realize that X(:)
is also accessed with unit stride, but for each iteration of the I-loop, X(J) is a constant.)
Programmers are likely to use this algorithm because it is simple and gives good performance
for small values of n. Potential re�nements of this computation include unrolling the loops,
which may improve performance due to more eÆcient use of the instruction and data cache.

11 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 5 Example Code { In-Line Product

Y = 0.0

DO J = 1, N

DO I = 1, N

Y(I) = Y(I)+A(I,J)*X(J)

END DO

END DO

Figure 6 Example Code { MATMUL Intrinsic Function

Y=MATMUL(A,X)

4.1.2 MATMUL Intrinsic

A programmer can use the Fortran MATMUL intrinsic function for computing the matrix-
vector product. To use the intrinsic function the programmer writes a single line (Figure 6).

4.1.3 Threaded Products

We concurrently compute the terms ti = Aixi with a thread-safe subprogram. A mutex
(P) is used to coordinate the accumulation of the sum, y y + ti. The partitioning of
the problem is done using recursion to build a family of threads that ultimately computes
a partial sum by calling the basic subprogram using the simple loops algorithm given in
x4.1.1.

When the number of columns in a thread's current assigned submatrix, Aj, reaches a
de�ned ideal value, the simple loops algorithm is called to compute the partial sum using Aj

and the corresponding xj. This partial sum is then added to the global sum. Alternatively,
two recursive threads are created and later joined. Each thread is assigned a subproblem
half the size of the problem assigned to the spawning thread. That is, consecutive columns of
Aj are divided into two approximately equal-sized submatrices and each portion is assigned
to one of the new threads.

While the basic matrix-vector subprogram may use loop unrolling to gain additional
performance, the biggest gain from threading is being able to take advantage of the inherent
concurrency of the approach and the fact that there are multiple threads used for the
computations.

Figures 7, 8, and 9 contain a Fortran module, support subroutines, and main program
that implement this recursive algorithm.

We do not claim that our threaded algorithm is optimal, only that it is correct and
signi�cantly improves performance over the other standard approaches on the hardware
platforms tested. The threshold used to determine the ideal size of submatrices for sim-
ple loop execution on all machines was set to generate eight threads that performed this
computation. This eight-thread limit was set because the SUN Enterprise system that was
available had eight processors, each with a separate instruction and data cache. Also, the
IBM Power3 SMP platform used was con�gured with eight processors per SMP node.

12 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 7 Example Code { Module for Threaded Matrix-Vector Product

MODULE MODULE_THREADED_PRODUCT

USE FPTHRD

IMPLICIT NONE

! This is the maximum number of threads that do actual computation.

INTEGER, PARAMETER :: NTHREADS = 8

INTEGER, PARAMETER :: NSIZE = 1023

TYPE(FPTHRD_MUTEX_T) :: P_MUTEX

! Define a derived type that will carry the problem information.

TYPE FUNCTION_ARGUMENTS

INTEGER :: N

REAL, DIMENSION(:,:), POINTER :: SMATRIX

REAL, DIMENSION(:), POINTER :: SX

REAL, DIMENSION(:), POINTER :: SY

END TYPE

TYPE(FUNCTION_ARGUMENTS) :: INA

! Define the interface to the routine called by the threaded routine.

INTERFACE

SUBROUTINE FSGEMV (N, SMATRIX, SX, SY, ROW_START, ROW_END)

IMPLICIT NONE

INTEGER :: N, ROW_START, ROW_END

REAL, POINTER, DIMENSION(:) :: SMATRIX(:,:), SX, SY

END SUBROUTINE FSGEMV

RECURSIVE SUBROUTINE THREADING_PRODUCT(LIMITS)

INTEGER :: LIMITS(2)

END SUBROUTINE THREADING_PRODUCT

END INTERFACE

END MODULE MODULE_THREADED_PRODUCT

13 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 8 Example Code { Routines for Threaded Matrix-Vector Product

RECURSIVE SUBROUTINE THREADING_PRODUCT(LIMITS)

USE MODULE_THREADED_PRODUCT, STARTED_ROUTINE=>THREADING_PRODUCT

! Symbol is reset to a dummy. This avoids error messages in some compilers.

IMPLICIT NONE

INTEGER :: IDEAL, K, J, LIMITS(2), LIMITS_L(2), LIMITS_R(2), STATUS

TYPE(FPTHRD_T) :: THREAD_L, THREAD_R

K = LIMITS(2)-LIMITS(1)+1; J = (LIMITS(1)+LIMITS(2))/2

! The problem LIMITS are split into two equally sized groups.

LIMITS_L = LIMITS; LIMITS_R = LIMITS

LIMITS_L(2) = J; LIMITS_R(1) = J+1

IDEAL = (INA%N+NTHREADS-1)/NTHREADS

IF (K <= IDEAL) THEN

! This routine is where the work actually gets done.

! The above value of IDEAL is used to create about NTHREADS threads

! across the multi-generational family.

CALL FSGEMV (INA%N, INA%SMATRIX, INA%SX, INA%SY, LIMITS(1), LIMITS(2))

ELSE

! Create a new family of two threads and reduce the problem size

CALL FPTHRD_CREATE(THREAD_L, NULL, STARTED_ROUTINE, LIMITS_L, STATUS)

CALL FERR_ABORT(5, STATUS, " recursive create-L in THREADING_PRODUCT")

CALL FPTHRD_CREATE(THREAD_R, NULL, STARTED_ROUTINE, LIMITS_R, STATUS)

CALL FERR_ABORT(6, STATUS, " recursive create-R in THREADING_PRODUCT")

CALL FPTHRD_JOIN(THREAD_L, NULL, STATUS)

CALL FERR_ABORT(7, STATUS, " recursive join-L in THREADING_PRODUCT")

CALL FPTHRD_JOIN(THREAD_R, NULL, STATUS)

CALL FERR_ABORT(8, STATUS, " recursive join-R in THREADING_PRODUCT")

END IF

END SUBROUTINE THREADING_PRODUCT

14 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 8 (Continued) Example Code { Routines for Threaded Matrix-Vector Product

SUBROUTINE FSGEMV (N, SMATRIX, SX, SY, COL_START, COL_END)

USE MODULE_THREADED_PRODUCT, NOT_USED=>FSGEMV

IMPLICIT NONE

INTEGER :: N, I, J, COL_START, COL_END, STATUS

REAL, POINTER :: SMATRIX(:,:), SX(:)

REAL, POINTER :: SY(:)

REAL :: T(N)

! Compute a partial sum of the matrix-vector product.

T = 0.0

DO J = COL_START, COL_END

DO I = 1, N

T(I) = T(I)+SMATRIX(I,J)*SX(J)

END DO

END DO

! Update the global vector sum, eventually with all partial sums.

! A lock is required to prevent a 'race' condition.

CALL FPTHRD_MUTEX_LOCK(P_MUTEX, STATUS)

DO I = 1, N

SY(I) = SY(I)+T(I)

END DO

CALL FPTHRD_MUTEX_UNLOCK(P_MUTEX, STATUS)

END SUBROUTINE FSGEMV

15 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 9 Example Code { Main Program Computing Matrix-Vector Product

PROGRAM MATRIX_VECTOR_PRODUCT

USE MODULE_THREADED_PRODUCT

IMPLICIT NONE

REAL, POINTER :: MATRIX_A(:,:), VECTOR(:), Y_SERIAL(:), Y_THREAD(:)

REAL :: ERRNORM, NORM, TEMP

INTEGER :: I, J, N, STATUS, LIMITS(2)

TYPE(FPTHRD_T) :: THREAD_ID

CALL FPTHRD_DATA_EXCHANGE()

CALL FPTHRD_SETCONCURRENCY(NTHREADS+1, STATUS)

CALL FPTHRD_MUTEX_INIT(P_MUTEX, NULL, STATUS)

CALL FERR_ABORT (1, STATUS, " initializing P_MUTEX")

! The Fortran random number generator is used to generate

! an arbitrary sequence of matrix and vector values.

N = NSIZE

ALLOCATE(MATRIX_A(N,N), VECTOR(N), Y_SERIAL(N), Y_THREAD(N))

CALL RANDOM_NUMBER(MATRIX_A)

CALL RANDOM_NUMBER(VECTOR)

! Compute the matrix-vector product for comparison.

Y_SERIAL = 0.0

DO J = 1, N

DO I = 1, N

Y_SERIAL(I) = Y_SERIAL(I)+MATRIX_A(I,J)*VECTOR(J)

END DO

END DO

! Define contents of the ad-hoc derived type for the problem data.

! This is the size and array definitions needed by the threads.

INA%N = N; INA%SMATRIX=>MATRIX_A; INA%SX=>VECTOR; INA%SY=>Y_THREAD

! Create a single thread for computing the product. Start this thread

! with the entire problem size as the argument to the recursive routine.

LIMITS = (/1,N/)

Y_THREAD = 0.0

CALL FPTHRD_CREATE(THREAD_ID, NULL, THREADING_PRODUCT, LIMITS, STATUS)

CALL FERR_ABORT(1, STATUS, " creating a recursive thread")

16 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 9 (Continued) Example Code { Main Program Computing Matrix-Vector Product

CALL FPTHRD_JOIN(THREAD_ID, NULL, STATUS)

CALL FERR_ABORT(1, STATUS, " joining a single recursive thread")

! Check results for correctness:

ERRNORM = SUM((Y_SERIAL-Y_THREAD)**2)

NORM = SUM(Y_SERIAL**2)

! The results are correct even if they do not completely agree.

! This test will fail for large errors. Small errors will be tolerated.

IF(ERRNORM > EPSILON(NORM)*NORM) THEN

PRINT *, "ERROR! Serial and threaded algorithms gave different results!"

END IF

END PROGRAM MATRIX_VECTOR_PRODUCT

Figure 10 Example Code { Simple Loops

DO J = 1, N

DO I = 1, N

B(J,I) = A(I,J)

END DO

END DO

4.2 Matrix Transposition

For this benchmark, the task is to assign the array B = AT , where A and B are both n�n
real matrices. Using the partitioning scheme from the previous benchmark, we can describe
the transpose as B = [A1jA2j � � � jAk]

T . Each group of rows for B corresponds to a set
of columns for A, and the storage process of each group may be concurrent. We examine
three methods for accomplishing this computation: simple loops, the Fortran TRANSPOSE

intrinsic, and threaded.

4.2.1 Simple Loops

This method uses an ordinary doubly nested loop (Figure 10). The inner loop moves
with unit strides in accessing the entries of the arrays A(:,:). Fortran uses column-major
storage so the stride for access to elements of B(:,:) is n. Programmers are likely to use
this loop because it results in good performance for small values of n. Re�nements of this
computation include unrolling the loops.

17 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Figure 11 Example Code { TRANSPOSE Array Intrinsic

B = TRANSPOSE(A)

Table 3 Speedup Ratios for Matrix-Vector Products Codes

Simple Loop vs MATMUL() vs
Machine Details Threaded Product Threaded Product

SUN Enterprise 4000 5.82 1.46

SGI Origin 2000 2.72 1.80

IBM Power3 SMP 3.20 3.30

4.2.2 TRANSPOSE Intrinsic

A programmer can use the Fortran TRANSPOSE intrinsic function for computing the matrix
transposition. To use the intrinsic function the programmer writes a single line (Figure 11).

4.2.3 Threaded Transpose

For this version of the code, data is concurrently moved from block columns of array A to
the block rows of array B. The partitioning of the problem is done recursively. When the
recursion is halted, the code completes the assignment using the simple code described in
x4.2.1. The code for this application is similar to that for the matrix-vector products. Thus,
we do not include the listings.

4.3 Timing Results

The data shown in Tables 3 and 4 are the speedup execution time for the in-line and intrinsic
function implementations compared to the threaded version. The simple loop matrix-vector
product code ran 5.82 times longer than the threaded code on the SUN Enterprise 4000
system; the simple loop transpose code ran 9.03 times longer than the threaded code on
the IBM Power3 SMP system. We avoided giving absolute times due to the fact that the
machines we used had varying computational power, and this could lead to the erroneous
conclusion that one machine was superior to the other two. The speedups demonstrate that
the use of threads enhances performance on all of these machines.

The test codes each timed repetition of the computations 16 times within a single run.
Each of these runs was repeated 32 separate times, and a median time computed for each
code. These median values were used to compute the speedup ratios. Because of the
variations in system load over time, it was decided that the use of median time across
repeated executions would yield a fairer value for comparison between each code. All
timing runs were executed on each platform using eight processors. The highest level of
optimization available in the Fortran compiler was used on each code.

18 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Table 4 Speedup Ratios for Array Transpose Codes

In-Line B = AT vs TRANSPOSE() vs
Machine Details Threaded Transpose Threaded Transpose

SUN Enterprise 4000 4.15 1.43

SGI Origin 2000 2.54 4.32

IBM Power3 SMP 9.03 5.01

5 Summary

In order for scienti�c and numerical codes to take full advantage of new SMP architectures,
some shared-memory programming model must be used. Pthreads is one such model for
shared-memory, concurrent programming. However, the primary language of scienti�c and
numerical computing is Fortran and a standard Pthreads interface is only de�ned for the C
language.

We have described the design and implementation of a Fortran API (FPTHRD) to the
Pthreads library. Our package allows Fortran programmers to harness the computing power
o�ered by Pthreads without having to program in C or to develop their own interlanguage
interface. We used FPTHRD within two benchmarking codes in order to demonstrate the
eÆcacy of threaded programming for scienti�c computation. FPTHRD was tested on three
operating systems to demonstrate portability.

Acknowledgments

We express our gratitude to Dr. Rob Fowler (Rice University) and Joseph Robichaux (IBM)
for advice and guidance during the development of this package. We also thank Mr. John
Bachir (Rice University) for his help testing the software.

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold L.
Wagener. Fortran 95 Handbook. The MIT Press, Cambridge, MA, 1997.

[2] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, Reading, MA,
1997.

[3] David R. Butenhof. Personal communication, 1999.

[4] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: A Users' Guide and Tutorial for Network Parallel Computing. The
MIT Press, Cambridge, MA, 1994.

[5] 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition] Information
Technology{Portable Operating System Interface (POSIX){Part 1: System Appli-
cation: Program Interface (API) [C Language] (ANSI), IEEE Standards Press,
1996.

19 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

[6] Bil Lewis and Daniel J. Berg. Multithreaded Programming with Pthreads. Sun Microsys-
tems Press, Mountain View, CA, 1998.

[7] Bradford Nichols, Dick Buttlar, and Jacqueline Prolux Farrell. Pthreads Programming.
O'Reilly and Associates, Sebastopol, CA, 1996.

[8] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI|The Complete Reference: Volume 1, the MPI Core. The MIT Press, Cambridge,
MA, 1998.

20 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

APPENDIX A { Fortran Interface to Pthreads Functions

This appendix contains information detailing the types and order of the parameters of the
Pthreads functions included in FPTHRD as well as a brief description of the functionality
of each routine.

SUBROUTINE fpthrd_attr_destroy(attr, status)

TYPE (fpthrd_attr_t), INTENT(OUT) :: attr

INTEGER, OPTIONAL, INTENT(OUT) :: status

Destroys the thread attribute object.

SUBROUTINE fpthrd_attr_getdetachstate(attr, createstate, status)

TYPE (fpthrd_attr_t), INTENT(IN) :: attr

INTEGER, INTENT(OUT) :: createstate

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current setting of detachstate de�ned in thread attribute.

SUBROUTINE fpthrd_attr_getinheritsched(attr, inheritsched, status)

TYPE (fpthrd_attr_t), INTENT(IN) :: attr

INTEGER, INTENT(OUT) :: inheritsched

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current setting of the scheduling inheritance in thread attribute.

SUBROUTINE fpthrd_attr_getschedparam(attr, param, status)

TYPE (fpthrd_attr_t), INTENT(IN) :: attr

TYPE (fsched_param), INTENT(OUT) :: param

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current setting of parameters used with scheduling in thread attribute.

SUBROUTINE fpthrd_attr_getschedpolicy(attr, policy, status)

TYPE (fpthrd_attr_t), INTENT(IN) :: attr

INTEGER, INTENT(OUT) :: policy

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current setting of scheduling policy in thread attribute.

SUBROUTINE fpthrd_attr_getscope(attr, scope, status)

TYPE (fpthrd_attr_t), INTENT(IN) :: attr

INTEGER, INTENT(OUT) :: scope

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current setting of scheduling scope in thread attribute.

SUBROUTINE fpthrd_attr_getstacksize(attr, stacksize, status)

TYPE (fpthrd_attr_t), INTENT(IN) :: attr

TYPE (fsize_t), INTENT(OUT) :: stacksize

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns the current setting of stack size in thread attribute.

21 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

SUBROUTINE fpthrd_attr_init(attr, status)

TYPE (fpthrd_attr_t), INTENT(OUT) :: attr

INTEGER, OPTIONAL, INTENT(OUT) :: status

Initializes thread attribute object to default settings.

SUBROUTINE fpthrd_attr_setdetachstate(attr, detachstate, status)

TYPE (fpthrd_attr_t), INTENT(INOUT) :: attr

INTEGER, INTENT(IN) :: detachstate

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets detach state in thread attribute.

SUBROUTINE fpthrd_attr_setinheritsched(attr, inherit, status)

TYPE (fpthrd_attr_t), INTENT(INOUT) :: attr

INTEGER, INTENT(IN) :: inherit

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets scheduling inheritance in thread attribute.

SUBROUTINE fpthrd_attr_setschedparam(attr, param, status)

TYPE (fpthrd_attr_t), INTENT(INOUT) :: attr

TYPE (fsched_param), INTENT(IN) :: param

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets scheduling parameters in thread attribute.

SUBROUTINE fpthrd_attr_setschedpolicy(attr, policy, status)

TYPE (fpthrd_attr_t), INTENT(INOUT) :: attr

INTEGER, INTENT(IN) :: policy

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets scheduling policy in thread attribute.

SUBROUTINE fpthrd_attr_setscope(attr, scope, status)

TYPE (fpthrd_attr_t), INTENT(INOUT) :: attr

INTEGER, INTENT(IN) :: scope

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets scheduling scope in thread attribute.

SUBROUTINE fpthrd_attr_setstacksize(attr, stacksize, status)

TYPE (fpthrd_attr_t), INTENT(INOUT) :: attr

TYPE (fsize_t), INTENT(IN) :: stacksize

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets stack size in thread attribute.

SUBROUTINE fpthrd_cancel(thread, status)

TYPE (fpthrd_t), INTENT(IN) :: thread

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sends cancellation signal to thread.

22 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

SUBROUTINE fpthrd_condattr_destroy(condattr, status)

TYPE (fpthrd_condattr_t), INTENT(OUT) :: condattr

INTEGER, OPTIONAL, INTENT(OUT) :: status
Destroys condition variable attribute object.

SUBROUTINE fpthrd_condattr_getpshared(condattr, pshared, status)

TYPE (fpthrd_condattr_t), INTENT(IN) :: condattr

INTEGER, INTENT(OUT) :: pshared

INTEGER, OPTIONAL, INTENT(OUT) :: status
Returns current process-shared setting in condition variable attribute.

SUBROUTINE fpthrd_condattr_init(condattr, status)

TYPE (fpthrd_condattr_t), INTENT(OUT) :: condattr

INTEGER, OPTIONAL, INTENT(OUT) :: status
Initializes condition variable object.

SUBROUTINE fpthrd_condattr_setpshared(condattr, pshared, status)

TYPE (fpthrd_condattr_t), INTENT(INOUT) :: condattr

INTEGER, INTENT(IN) :: pshared

INTEGER, OPTIONAL, INTENT(OUT) :: status
Sets process-shared setting in condition variable attribute.

SUBROUTINE fpthrd_cond_broadcast(cond, status)

TYPE (fpthrd_cond_t), INTENT(INOUT) :: cond

INTEGER, OPTIONAL, INTENT(OUT) :: status
Broadcast wakeup signal to all threads waiting on condition variable.

SUBROUTINE fpthrd_cond_destroy(cond, status)

TYPE (fpthrd_cond_t), INTENT(OUT) :: cond

INTEGER, OPTIONAL, INTENT(OUT) :: status
Destroy condition variable object.

SUBROUTINE fpthrd_cond_init(cond, condattr, status)

TYPE (fpthrd_cond_t), INTENT(OUT) :: cond

TYPE (fpthrd_condattr_t), INTENT(IN) :: condattr ! may be NULL

INTEGER, OPTIONAL, INTENT(OUT) :: status
Initialize condition variable object.

SUBROUTINE fpthrd_cond_signal(cond, status)

TYPE (fpthrd_cond_t), INTENT(INOUT) :: cond

INTEGER, OPTIONAL, INTENT(OUT) :: status
Signal at least one thread waiting on condition variable.

SUBROUTINE fpthrd_cond_timedwait(cond, mutex, timespec, status)

TYPE (fpthrd_cond_t), INTENT(INOUT) :: cond

TYPE (fpthrd_mutex_t), INTENT(INOUT) :: mutex

TYPE (ftimespec), INTENT(IN) :: timespec

INTEGER, OPTIONAL, INTENT(OUT) :: status

23 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Wait on condition variable up to a speci�ed length of time.

SUBROUTINE fpthrd_cond_wait(cond, mutex, status)

TYPE (fpthrd_cond_t), INTENT(INOUT) :: cond

TYPE (fpthrd_mutex_t), INTENT(INOUT) :: mutex

INTEGER, OPTIONAL, INTENT(OUT) :: status

Wait on condition variable.

SUBROUTINE fpthrd_create(thread, attr, routine, arg, status)

TYPE (fpthrd_t), INTENT(OUT) :: thread

TYPE (fpthrd_attr_t), INTENT(IN) :: attr ! may be NULL

<type>, INTENT(IN) :: arg ! may be NULL

INTEGER, INTENT(OUT) :: status

Create new thread executing subroutine routine. The subroutine routine() with single
argument arg can be use-associated from a module or else be declared EXTERNAL.

SUBROUTINE fpthrd_detach(thread, status)

TYPE (fpthrd_t), INTENT(IN) :: thread

INTEGER, OPTIONAL, INTENT(OUT) :: status

Set detach state of calling thread.

SUBROUTINE fpthrd_equal(thread1, thread2, flag)

TYPE (fpthrd_t), INTENT(IN) :: thread1

TYPE (fpthrd_t), INTENT(IN) :: thread2

INTEGER, OPTIONAL, INTENT(OUT) :: status

Compare one thread handle to another.

SUBROUTINE fpthrd_exit(value)

INTEGER, INTENT(IN) :: value ! may be NULL

Terminate calling thread, returning value to any thread that joins terminated thread.

SUBROUTINE fpthrd_getschedparam(thread, policy, param, status)

TYPE (fpthrd_t), INTENT(IN) :: thread

INTEGER, INTENT(OUT) :: policy

TYPE (fsched_param), INTENT(OUT) :: param

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current scheduling parameters and policy of thread.

SUBROUTINE fpthrd_join(thread, value, status)

TYPE (fpthrd_t), INTENT(IN) :: thread

INTEGER, INTENT(OUT) :: value ! may be NULL

INTEGER, OPTIONAL, INTENT(OUT) :: status

Await termination of thread, return exit value of terminated thread.

SUBROUTINE fpthrd_mutexattr_destroy(mutexattr, status)

TYPE (fpthrd_mutexattr_t), INTENT(OUT) :: mutexattr

INTEGER, OPTIONAL, INTENT(OUT) :: status

24 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

Destroy mutex attribute object.

SUBROUTINE fpthrd_mutexattr_getprioceiling(mutexattr, prioceiling, status)

TYPE (fpthrd_mutexattr_t), INTENT(IN) :: mutexattr

INTEGER, INTENT(OUT) :: prioceiling

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current priority ceiling of mutex attribute.

SUBROUTINE fpthrd_mutexattr_getprotocol(mutexattr, protocol, status)

TYPE (fpthrd_mutexattr_t), INTENT(IN) :: mutexattr

INTEGER, INTENT(OUT) :: protocol

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current protocol of mutex attribute.

SUBROUTINE fpthrd_mutexattr_getpshared(mutexattr, pshared, status)

TYPE (fpthrd_mutexattr_t), INTENT(IN) :: mutexattr

INTEGER, INTENT(OUT) :: pshared

INTEGER, OPTIONAL, INTENT(OUT) :: status

Returns current process-shared setting of mutex attribute.

SUBROUTINE fpthrd_mutexattr_init(mutexattr, status)

TYPE (fpthrd_mutexattr_t), INTENT(OUT) :: mutexattr

INTEGER, OPTIONAL, INTENT(OUT) :: status

Initializes mutex attribute object.

SUBROUTINE fpthrd_mutexattr_setprioceiling(mutexattr, prioceiling, status)

TYPE (fpthrd_mutexattr_t), INTENT(INOUT) :: mutexattr

INTEGER, INTENT(IN) :: prioceiling

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets priority ceiling of mutex attribute.

SUBROUTINE fpthrd_mutexattr_setprotocol(mutexattr, protocol, status)

TYPE (fpthrd_mutexattr_t), INTENT(INOUT) :: mutexattr

INTEGER, INTENT(IN) :: protocol

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets protocol of mutex attribute.

SUBROUTINE fpthrd_mutexattr_setpshared(mutexattr, pshared, status)

TYPE (fpthrd_mutexattr_t), INTENT(INOUT) :: mutexattr

INTEGER, INTENT(IN) :: pshared

INTEGER, OPTIONAL, INTENT(OUT) :: status

Sets process-shared setting of mutex attribute.

SUBROUTINE fpthrd_mutex_destroy(mutex, status)

TYPE (fpthrd_mutex_t), INTENT(OUT) :: mutex

INTEGER, OPTIONAL, INTENT(OUT) :: status

Destroys mutex.

25 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

SUBROUTINE fpthrd_mutex_init(mutex, mutexattr, status)

TYPE (fpthrd_mutex_t), INTENT(OUT) :: mutex

TYPE (fpthrd_mutexattr_t), INTENT(IN) :: mutexattr ! may be NULL

INTEGER, OPTIONAL, INTENT(OUT) :: status
Initializes mutex.

SUBROUTINE fpthrd_mutex_lock(mutex, status)

TYPE (fpthrd_mutex_t), INTENT(INOUT) :: mutex

INTEGER, OPTIONAL, INTENT(OUT) :: status
Lock mutex if no other thread has control; else wait for lock to be released.

SUBROUTINE fpthrd_mutex_trylock(mutex, status)

TYPE (fpthrd_mutex_t), INTENT(INOUT) :: mutex

INTEGER, OPTIONAL, INTENT(OUT) :: status
Lock mutex if no other thread has control; else return with exception.

SUBROUTINE fpthrd_mutex_unlock(mutex, status)

TYPE (fpthrd_mutex_t), INTENT(INOUT) :: mutex

INTEGER, OPTIONAL, INTENT(OUT) :: status
Release mutex held.

SUBROUTINE fpthrd_once(once_block, init_routine, status)

TYPE (fpthrd_once_t), INTENT(INOUT) :: once_block

INTEGER, OPTIONAL, INTENT(OUT) :: status
Ensures that init routinewill be executed by only one thread. The subroutine init routine(),
with no arguments, can be use-associated from a module or else be declared EXTERNAL.

SUBROUTINE fpthrd_self(thread)

TYPE (fpthrd_t), INTENT(OUT) :: thread
Return calling threads handle.

SUBROUTINE fpthrd_setcancelstate(state, oldstate, status)

INTEGER, INTENT(IN) :: state

INTEGER, INTENT(OUT) :: oldstate

INTEGER, OPTIONAL, INTENT(OUT) :: status
Set cancel state of calling thread, return current cancel state.

SUBROUTINE fpthrd_setcanceltype(type, oldtype, status)

INTEGER, INTENT(IN) :: type

INTEGER, INTENT(OUT) :: oldtype

INTEGER, OPTIONAL, INTENT(OUT) :: status
Set cancel type of calling thread, return current cancel type.

SUBROUTINE fpthrd_setschedparam(thread, policy, param, status)

TYPE (fpthrd_t), INTENT(IN) :: thread

INTEGER, INTENT(IN) :: policy

TYPE (fsched_param), INTENT(IN) :: param

INTEGER, OPTIONAL, INTENT(OUT) :: status
Set scheduling parameters and policy of thread.

SUBROUTINE fpthrd_testcancel()
Accepts any pending cancellation signal.

26 of 27

May 25, 2000 A Fortran Interface to POSIX Threads

APPENDIX B { Additional Fortran Routines

The details of additional support and utility routines within FPTHRD are given in this
appendix. A routine to get the timespec structure is not included because the seconds
component of the structure is given in absolute time units, based on an unspeci�ed previous
time. Only the �rst routine listed here requires a status parameter since it is a de�ned
Pthreads function that returns an exception code. The other routines do not need this
parameter or do not correspond to any Pthreads function.

SUBROUTINE fpthrd_setconcurrency(new_level, status)

INTEGER, INTENT(IN) :: new_level

INTEGER, OPTIONAL, INTENT(OUT) :: status

Give runtime system a hint about the number of threads to be executing concurrently.

SUBROUTINE fpthrd_getconcurrency(level)

INTEGER, INTENT(OUT) :: level

Return current concurrency level; return 0 if level is being maintained automatically.

SUBROUTINE fpthrd_data_exchange()

Initialize Fortran Pthreads API and exchange parameter values.

SUBROUTINE fpthrd_set_fsize(size, fsize)

INTEGER, INTENT(IN) :: size

TYPE (fsize_t), INTENT(OUT) :: fsize

Translate the fsize derived type to the corresponding value of size.

SUBROUTINE fpthrd_get_fsize(size, fsize)

INTEGER, INTENT(OUT) :: size

TYPE (fsize_t), INTENT(IN) :: fsize

Retrieve the current size value within the fsize t derived type.

SUBROUTINE fpthrd_set_fsched_param(schedule_value, sched)

INTEGER, INTENT(IN) :: schedule_value

TYPE (fsched_param), INTENT(INOUT) :: sched

Set the fsched param derived type with the value of the given schedule value constant.

SUBROUTINE fpthrd_get_fsched_param(schedule_value, sched)

INTEGER, INTENT(OUT) :: schedule_value

TYPE (fsched_param), INTENT(IN) :: sched

Retrieve the current value of the fsched param derived type.

SUBROUTINE fpthrd_set_ftimespec(change_sec, change_nanosec, t)

INTEGER, INTENT(IN) :: change_sec

INTEGER, INTENT(IN) :: change_nanosec

TYPE (ftimespec), INTENT(OUT) :: t

Set the updated absolute units of seconds and nanoseconds in the ftimespec derived type.

27 of 27

